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Immediate death: not so bad if you discount the future, but still worse than it should be. 

Eleanor Pullenayegum1,2, Marcel Jonker3,4,5, Henry Bailey6,7, Bram Roudijk8 

Abstract 

Background: Use of Discrete Choice Experiments (DCEs) as a stand-alone valuation method 
requires anchoring latent scale DCE estimates on the 0-1 QALY scale, usually either through 
tasks involving choices between immediate death and various impaired health states, or between 
health states with varying durations of life. We sought to determine which anchoring approach 
aligns best with the composite Time Trade-Off (cTTO) method. 

Methods: A sample of 970 respondents from Trinidad and Tobago completed a DCE with 
duration survey. Tasks involved choosing between two lives with identical durations, followed 
by a third option, representing either full health for a number of years or immediate death. The 
data were analysed using mixed logit models, both with and without exponential discounting for 
time preferences. The models were anchored via full health and immediate death tasks. 

Results: When imposing linear time preferences, the utility of immediate death was estimated to 
be -2.1 (95% CrI -3.2 to -1.2) vs. -0.28 (95% CrI -0.47, -0.10) when allowing for non-linear time 
preferences. Under linear time preferences, the predicted health-state values anchored on 
duration range between -1.03 and 1 compared to 0.34 and 1 when anchored on immediate death. 
Under non-linear time preferences, the predicted values anchored on duration ranged between -
0.54 and 1 vs. -0.22 and 1 when anchored on immediate death. In the model accounting for non-
linear time preferences, the estimated discount parameter was 23% with (95% CrI 22% to 25%) 

Conclusions: The non-zero discount parameter provides evidence of non-linear time preferences. 
The non-linear time preferences anchored on duration provided the closest match to the 
benchmark EQ-VT cTTO values in Trinidad and Tobago, which ranged from -0.6 to 1. These 
findings suggest that DCE with duration can provide similar values to cTTO provided that 
nonlinear time preferences are accounted for, and anchoring is based on duration.  
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Introduction 

Quality-adjusted life years are a key component in economic evaluations in many countries (1-

4), and typically rely on instruments such as the EQ-5D-5L (5), SF-6D (6), or HUI3 (7) to elicit 

health utilities. These instruments require a value set that specifies the population utility 

associated with each health state captured by the instrument. Discrete choice experiments have 

emerged as a promising approach to creating such value sets, as they can be done online and do 

not need to be interviewer-administered (8, 9). This makes them an attractive alternative to cTTO 

and standard gamble, both of which need to be administered by a trained interviewer. 

When respondents choose between two health states without duration, preferences can be 

inferred on a latent scale, i.e. up to a linear transform. Some additional information is required to 

anchor the utilities on the full-health – dead scale (where full health has a utility of 1 and being 

dead has a utility of zero). These anchors can be either external (12, 13) or based on additional 

discrete choice tasks. This latter option is the focus of this paper. There are two types of 

additional tasks that can be used to anchor the latent utilities: a discrete form of TTO anchoring 

which involves trading off an impaired health state of a specified duration with full health for a 

shorter duration, or trading off impaired health states of a specified duration with immediate 

death.  

The latter has been widely used (8, 9), however there is evidence that immediate death is not 

interpreted in the same way as “a health state of duration zero”, even though theoretically both 

should have a utility of zero (14). In particular, immediate death has been reported to have a 

much lower utility than a state of duration zero (11, 15). This finding is consistent with 

qualitative findings from time trade-off interviews, which suggest that there is both a 

discontinuity in preferences as durations approach zero (16, 17), as well as heterogeneity in how 

people interpret immediate death. 

In dealing with either of these issues, a third issue must be contended with: time-preferences are 

non-linear. There is empirical evidence that respondents discount future health status in favour of 

improved health now (18, 19). However, estimating this discount rate requires careful selection 

of discrete choice tasks in order to make the parameter identifiable (20).  
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An important limitation in previous work exploring anchoring on immediate death is that the 

DCE tasks were not designed to permit estimation of the discount parameter. It is therefore 

currently unknown whether anchoring latent utilities from DCEs on immediate death remains 

problematic when incorporating discounting into the estimation procedure. 

We previously reported on two valuation studies of the EQ-5D-5L in Trinidad & Tobago. The 

first valuation study used the international EQ-5D-5L EQ-VT valuation protocol based on 

composite time trade-off (cTTO) tasks (21), while the second used  DCE with duration protocol 

(19, 22, 23) that permits the estimation of non-linear time preferences, and compared the results 

with that those obtained using the EQ-VT valuation protocol (24).  

 

In this work, we use data collected in the Trinidad & Tobago DCE with duration valuation study 

to examine whether immediate death continues to have a lower utility than a state of duration 

zero after accounting for discounting. We compute value sets anchoring on a duration of zero and 

anchoring on immediate death, and examine how well the range of the value sets agrees with the 

range of the value set based on cTTO (24), in order to inform recommendations on how to 

anchor latent scale DCE utilities.  

 

Methods 

Population: We used an existing sample of 970 respondents included in the Trinidad and Tobago 

DCE valuation study (25). This study used quota sampling to achieve a population that was 

representative of the general population in terms of age, sex and geography. Recruitment was 

through a panel company, which used both an internet panel (emailed links to the survey) and 

recruitment in public places (e.g. libraries, transit hubs) with survey completion done on the 

recruiter’s laptop.  

 

Task types: Each respondent completed one set of 18 split triplets (26), 15 of which involved 

trade-offs with full-health and 3 of which involved trade-offs with immediate death. Each triplet 

began with a pair of health states of equal duration (life A and life B), from which the respondent 
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was asked to choose their preference. To simplify the task, life A and life B differed in just 3 of 

the 5 EQ-5D-5L dimensions; the other two dimensions were the same in life A and life B.  

Regardless of the stated preference, in the second half of the triplet life A was blurred and the 

respondent was asked to choose between life B and life C. In those split triplets involving 

tradeoffs with full health, life C was defined as full health but with a shorter duration than life B; 

this choice is thus a discrete version of a traditional TTO task. In those split triplets involving 

tradeoffs with immediate death, life C was immediate death. 

 

DCE design: A near-orthogonal design was used initially; the responses to which (n=211) were 

analysed to create a more efficient design using the TPC-QD software package (20).  The design 

was further updated at intervals of 200 respondents until the priors used to generate the design 

did not change substantially between updates. Durations were whole years from 1 up to and 

including 15, with an additional duration of 6 months. Each design contained 10 subdesigns with 

18 split triplets as described above. Respondents were randomly assigned to one of the 18 split 

triplets, with the order of lives A and B also randomly assigned. 

 

Analytic plan: Letting 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 be the latent utility for respondent i valuing health state j with a 

duration t, we assume a mixed logit model, i.e.,  

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑗𝑗𝛽𝛽𝑖𝑖∗𝐷𝐷(𝑡𝑡;𝜌𝜌) + 𝛽𝛽𝑖𝑖𝑖𝑖+1∗ I(state j is immediate death) +  𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 

where Xj is a p-dimensional row vector of attributes of health state j whose first element is 1 to 

provide an intercept, 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 ∼iid Gumbel, 𝛽𝛽𝑖𝑖∗ ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝛽𝛽⬚
∗ , Σ∗𝛽𝛽) , I() denotes an indicator function, 

and 𝐷𝐷(𝑡𝑡;𝜌𝜌) is the discounted duration under exponential discounting with discount parameter ρ, 

i.e. 𝐷𝐷(𝑡𝑡;𝜌𝜌) =  1−𝑒𝑒𝑒𝑒𝑒𝑒(𝜌𝜌𝜌𝜌)
𝑒𝑒𝑒𝑒𝑒𝑒{𝜌𝜌}−1

  for ρ >0 and D(t; ρ) = t for ρ =0. 

We fitted two models. The first assumed no discounting, i.e. ρ =0, while the second used a 

Uniform(0,1)  prior for ρ. 

We assumed a main effects functional form for the design matrix, specifically Xj=(1,MO2j, 

MO3j, MO4j, MO5j, SC2j, SC3j, SC4j, SC5j, UA2j, UA3j, UA4j, UA5j, PD2j, PD3j, PD4j, PD5j, 
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AD2j, AD3j, AD4j, AD5j), where MO2j, MO3j, MO4j, MO5j are indicators (0=no, 1=yes) for 

whether mobility in health state j is at level 2, 3, 4 or 5 respectively, and similarly for self-care, 

usual activities, pain/discomfort, and anxiety/depression. 

Models were estimated using OpenBugs, using 3 chains, a burn-in of 50000 and 50000 draws 

from the posterior distributions. Convergence was evaluated based on inspection of the chains 

and diagnostics proposed by Geweke (27) .  The BUGS models, including the exact specification 

of the prior distributions, are included in the online supplemental. 

 

The fitted models yield estimates of Σ𝛽𝛽∗/√2𝜎𝜎, 𝛽𝛽 = 𝛽𝛽⬚
∗ /√2𝜎𝜎, and ρ. To anchor the utilities to the 

full health-dead scale, we have two options. Option 1 is to assume that immediate death has a 

utility of zero, so that 𝛽𝛽1∗ − 𝛽𝛽𝑝𝑝+1∗ = 1; it then follows that 𝛽𝛽1⬚ − 𝛽𝛽𝑝𝑝+1   =  1 √2⁄ 𝜎𝜎 so that  

𝛽𝛽∗ = 𝛽𝛽 (𝛽𝛽1 −  𝛽𝛽𝑝𝑝+1)⁄  . Option 2 is to note that since full health has a utility of 1 by definition, 

i.e. 𝛽𝛽1∗=1, and thus 𝛽𝛽1 =  1 √2𝜎𝜎⁄  so  𝛽𝛽∗ =  𝛽𝛽 𝛽𝛽1⁄  . We anchored the utilities using each option in 

turn. 

 

Results 

 As can be seen from Figure 1 and Table 1, both the choice of anchor and the choice of time 

preferences affect the coefficients. 

When time preferences were assumed to be linear and anchoring was on duration, immediate 

death had a posterior mean disutility of -2.1 (95% CrI -3.2 to -1.2). This increased to -0.28 (95% 

CrI -0.47, -0.10) when allowing for non-linear time preferences. 

Time preferences were not linear; the estimated discount rate parameter has a posterior mean of 

23.4% with 95% CrI 21.7% to 25.1%. Assuming linear time preferences (i.e., fixing the discount 

parameter at zero) generally led to smaller disutilities when anchoring on immediate death 

(Figure 1, black vs. green lines), while it led to larger disutilities when anchoring on a duration of 

zero (Figure 1, red vs. blue lines). 
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Anchoring on immediate death led to smaller disutilities than anchoring on zero duration 

regardless of whether or not time preferences were assumed to be linear (Figure 1; linear: black 

vs. red; non-linear: green vs. blue), although the effect was more pronounced under linear time 

preferences. See Table 1 for tabulated regression coefficients. 

Furthermore, when time preferences were assumed to be linear and anchoring was on duration, 

immediate death had a posterior mean disutility of -2.1 (95% CrI -3.2 to -1.2). This increased 

substantially to -0.28 (95% CrI -0.47, -0.10) on when allowing for non-linear time preferences 

(Table 1). 

Table 1: Regression coefficients (Standard Errors) under linear and non-linear time 
preferences, and with anchoring on either immediate death or duration 

 Linear time preferences Non-linear time preferences 
 Anchored on Anchored on 
 Immediate Death Duration Immediate Death Duration 

Mobility level 2 -0.021 (0.003) -0.065 (0.011) -0.025 (0.005) -0.032 (0.007) 
Mobility level 3 -0.048 (0.005) -0.146 (0.019) -0.075 (0.007) -0.095 (0.009) 
Mobility level 4 -0.095 (0.009) -0.290 (0.035) -0.169 (0.012) -0.215 (0.013) 
Mobility level 5 -0.153 (0.015) -0.469 (0.052) -0.284 (0.018) -0.361 (0.018) 
Self-care level 2 -0.026 (0.004) -0.080 (0.013) -0.031 (0.006) -0.039 (0.007) 
Self-care level 3 -0.037 (0.004) -0.115 (0.016) -0.057 (0.007) -0.072 (0.008) 
Self-care level 4 -0.084 (0.008) -0.256 (0.030) -0.142 (0.010) -0.181 (0.011) 
Self-care level 5 -0.120 (0.011) -0.369 (0.044) -0.223 (0.015) -0.283 (0.014) 

Usual Activities level 2 -0.023 (0.005) -0.069 (0.010) -0.017 (0.006) -0.022 (0.007) 
Usual Activities level 3 -0.037 (0.006) -0.111 (0.013) -0.045 (0.007) -0.058 (0.008) 
Usual Activities level 4 -0.069 (0.008) -0.210 (0.022) -0.106 (0.009) -0.135 (0.010) 
Usual Activities level 5 -0.098 (0.011) -0.300 (0.031) -0.166 (0.011) -0.210 (0.012) 
Pain/Discomfort level 2 -0.029 (0.004) -0.089 (0.014) -0.046 (0.006) -0.059 (0.007) 
Pain/Discomfort level 3 -0.046 (0.005) -0.140 (0.018) -0.078 (0.007) -0.099 (0.008) 
Pain/Discomfort level 4 -0.101 (0.010) -0.308 (0.037) -0.181 (0.013) -0.230 (0.013) 
Pain/Discomfort level 5 -0.153 (0.015) -0.469 (0.054) -0.287 (0.020) -0.365 (0.019) 

Anxiety/Depression level 2 -0.030 (0.004) -0.093 (0.013) -0.042 (0.006) -0.053 (0.007) 
Anxiety/Depression level 3 -0.060 (0.006) -0.184 (0.025) -0.100 (0.008) -0.127 (0.009) 
Anxiety/Depression level 4 -0.114 (0.010) -0.349 (0.044) -0.205 (0.014) -0.260 (0.015) 
Anxiety/Depression level 5 -0.136 (0.012) -0.418 (0.052) -0.255 (0.017) -0.324 (0.017) 
Immediate Death n/a -2.102 (0.538) n/a  -0.275 (0.095) 
Utility of 55555 (95% CrI)     

 



7 
 

  

Figure 1: Radar plot of scaled disutilities  from the  mixed logit models with and without 

non-linear time preferences, and with anchoring on either immediate death or duration 

The worst health state had an estimated utility of 0.34 (95% CrI 0.20, 0.44) with linear time 

preferences anchored on immediate death, -1.03 (95% CrI -1.54, -0.65) with linear time 

preferences anchored in duration, -0.21 (95% CrI -0.37, -0.08) for non-linear time preferences 

anchored on immediate death, and -0.54 (95% CrI -0.69, -0.41) for non-linear time preferences 

anchored on duration (Figure 2). For comparison, the reported utility for the worst health state 

using cTTO was -0.61. Correspondence between the health state utilities under cTTO and DCE 

are shown in Figure 3, with non-linear time preferences anchored on duration providing the 

closest correspondence. 
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Figure 2: Length of the QALY scale under different time preferences and anchor choices 
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Figure 3: Comparison of DCE-based tariffs to the cTTO tariff 

 

 

Discussion 

A unique contribution of this paper is that we have compared anchoring on duration vs. 

anchoring on immediate death while accounting for non-linear time preferences. Our findings in 
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a general population sample from Trinidad and Tobago are that firstly, immediate death does not 

have a utility of zero (this is true regardless of whether linear time preferences are assumed, 

although the utility is closer to zero on assuming non-linear time preferences); secondly, that 

time preferences are non-linear; and thirdly, that when comparing the four DCE QALY tariffs 

with the cTTO tariff, assuming non-linear time preferences and anchoring on duration yields 

close agreement, while the other four choices yield poor agreement.  

The non-linear time-preferences we observed have also been noted in a number of valuation 

studies using both DCE (18, 19, 28) and TTO (29-31), and a greater impact for DCE-based 

valuation over TTO-based valuation has been hypothesized (19). Mistakenly assuming linear 

time preferences led to a utility scale ranging from 0.338 to 1 when anchoring on immediate 

death, or to a range of -1.026 to 1 when anchoring on a duration of zero (with immediate death 

having an estimated utility of -2.1). The utility range on anchoring on immediate death, and the 

utility attached to immediate death are, in our opinion, unreasonable. Thus the assumption of 

linear time preferences is not only empirically refuted by the estimated discount parameter 

having a posterior distribution with most of its mass away from zero, it also leads to a value set 

that lacks face validity. 

A shifting of preferences for immediate death away from zero on anchoring the tariff using 

duration has also been noted elsewhere. For example, immediate death was reported to have 

utilities of -0.46 (95% CI -0.79, -0.02) and -3.94 (-5.56, -2.36) in Australian studies of the EQ-

5D-5L and SF-6D, respectively, on using the mixed logit model (11). Under a conditional logit 

model, anchoring on immediate death has been noted to lead to a shorter scale than anchoring on 

full health (32). Notably, however, these analyses all assumed linear time-preferences. 

There are several explanations for the shift of immediate death away from zero. While 

equivalence to death has been formally defined (33), the processes by which respondents decide 

whether something is better or worse than dead do not always match this definition (34) and are, 

moreover, sensitive to framing (35).  

Our results are specific to Trinidad and Tobago and do not necessarily generalize elsewhere. 

When non-linear time preferences were accounted for and when anchoring was on duration, the 

observed utility range of -0.55 to 1 agreed well with that obtained for Trinidad & Tobago (24) 



11 
 

using cTTO preferences elicited using the widely used EQ-VTv2 protocol (21) (utilities ranged 

from -0.6 to 1 ). Moreover, the two sets of preferences agreed well not just in range but at the 

individual state level (25). 

In summary, we recommend that valuation studies using DCEs with duration design the choice 

tasks so as to be able estimate discount parameters, and examine whether non-linear time 

preferences are present. We further suggest that, given respondents’ potential for heterogeneous 

interpretations of immediate death, tariffs be anchored on duration rather than immediate death. 
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Appendix: 

Model code linear model 

model { 

# N = number of respondents    

# T = number of choice tasks per respondent 

# A = number of alternatives per choice task 

# V = number of explanatory variables (including non-linear time preference) 

 

# likelihood 

for (n in 1:N){ 

 for (t in 1:T){ 

  Y[n,t] <- 1 

  Y[n,t] ~ dcat(prob[n, t, 1:2]) 

}} 

 

# prob calculations <- user-written softmax function 

for (n in 1:N){ 

 for (t in 1:T){    

  prob[n,t,1:2] <- softmaxExpDeath(X[n,t,1,], Q[n,t,1], X[n,t,2,], Q[n,t,2], beta[n,], rate) 

}} 

 

# priors 

 

# multivariate normal prior on beta 

for (n in 1:N){ beta[n,1:V] ~ dmnorm(mu_beta[], prec_beta[,]) }  

mu_beta[1:V] ~ dmnorm(hyper_mu_beta[],hyper_tau_beta[,]) 

prec_beta[1:V,1:V] ~ dwish(scaleMatrix[,],V) 

 

for (b in 1:V){      
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 hyper_mu_beta[b] <- 0   

 for (bb in 1:V){ 

   scaleMatrix[b,bb] <- equals(b,bb) 

   hyper_tau_beta[b,bb] <- equals(b,bb)/100 

}} 

 

# normal prior on discount rate 

rate <-0.0 

 

# additional computations 

# population SD 

covar[1:V,1:V] <- inverse(prec_beta[,]) 

for (v in 1:V){ SD[v] <- sqrt(covar[v,v]) } 

 

# log-likelihood 

for (n in 1:N){   

 for (t in 1:T) { LL_task[n,t] <- log( prob[n,t, Y[n,t] ]) } 

 LL_resp[n] <- sum(LL_task[n,]) 

} 

LL <- sum(LL_resp[]) 

 

# McFadden R-squared 

LL_random <- N*T*log(0.5) 

Rsq <- (LL - LL_random)/-LL_random 

 

# QALY estimates (duration) 

QALY_DUR[1] <- 1 

for (v in 2:V){  

  QALY_DUR[v] <- mu_beta[v] / mu_beta[1]  

} 
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#worst possible health state 55555 

worst[1] <- QALY_DUR[1] + QALY_DUR[5] + QALY_DUR[9] +QALY_DUR[13] 
+QALY_DUR[17] + QALY_DUR[21] 

# QALY estimates (immediate death) 

QALY_DEAD[1] <- 1 

for (v in 2:V-1){  

  QALY_DEAD[v] <- QALY_DUR[v] *  (1/(1-QALY_DUR[V]) )  

} 

QALY_DEAD[V] <-0 

worst[2] <- QALY_DEAD[1] + QALY_DEAD[5] + QALY_DEAD[9] +QALY_DEAD[13] 
+QALY_DEAD[17] + QALY_DEAD[21] 

} 

} 

 

Model code non-linear model 

model { 

 

# N = number of respondents    

# T = number of choice tasks per respondent 

# A = number of alternatives per choice task 

# V = number of explanatory variables (including non-linear time preference) 

# likelihood 

for (n in 1:N){ 

 for (t in 1:T){ 

  Y[n,t] <- 1 

  Y[n,t] ~ dcat(prob[n, t, 1:2]) 

}} 

 

# prob calculations <- user-written softmax function 

for (n in 1:N){ 
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 for (t in 1:T){    

  prob[n,t,1:2] <- softmaxExpDeath(X[n,t,1,], Q[n,t,1], X[n,t,2,], Q[n,t,2], beta[n,], rate) 

}} 

 

# priors 

 

# multivariate normal prior on beta 

for (n in 1:N){ beta[n,1:V] ~ dmnorm(mu_beta[], prec_beta[,]) }  

mu_beta[1:V] ~ dmnorm(hyper_mu_beta[],hyper_tau_beta[,]) 

prec_beta[1:V,1:V] ~ dwish(scaleMatrix[,],V) 

 

for (b in 1:V){      

 hyper_mu_beta[b] <- 0   

 for (bb in 1:V){ 

   scaleMatrix[b,bb] <- equals(b,bb) 

   hyper_tau_beta[b,bb] <- equals(b,bb)/100 

}} 

 

# normal prior on discount rate 

rate ~ dunif(0,1) 

 

# additional computations 

# population SD 

covar[1:V,1:V] <- inverse(prec_beta[,]) 

for (v in 1:V){ SD[v] <- sqrt(covar[v,v]) } 

 

# log-likelihood 

for (n in 1:N){   

 for (t in 1:T) { LL_task[n,t] <- log( prob[n,t, Y[n,t] ]) } 

 LL_resp[n] <- sum(LL_task[n,]) 



5 
 

} 

LL <- sum(LL_resp[]) 

 

# McFadden R-squared 

LL_random <- N*T*log(0.5) 

Rsq <- (LL - LL_random)/-LL_random 

 

# QALY estimates (duration) 

QALY_DUR[1] <- 1 

for (v in 2:V){  

  QALY_DUR[v] <- mu_beta[v] / mu_beta[1]  

} 

#worst possible health state 55555 

worst[1] <- QALY_DUR[1] + QALY_DUR[5] + QALY_DUR[9] +QALY_DUR[13] 
+QALY_DUR[17] + QALY_DUR[21] 

 

# QALY estimates (immediate death) 

QALY_DEAD[1] <- 1 

for (v in 2:V-1){  

  QALY_DEAD[v] <- QALY_DUR[v] *  (1/(1-QALY_DUR[V]) )  

} 

QALY_DEAD[V] <-0 

worst[2] <- QALY_DEAD[1] + QALY_DEAD[5] + QALY_DEAD[9] +QALY_DEAD[13] 
+QALY_DEAD[17] + QALY_DEAD[21] 

} 

} 
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